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Abstract—The 5�-protected 3�-phosphoramidite of 1-(2�-deoxy-�-D-ribofuranosyl)-2-ethynyl-4-fluorobenzene was prepared and
employed in the synthesis of oligonucleotides. The duplex of CTTTTCFcTTCTT with AAGAAAGAAAAG, where Fc is the
ethynylfluorobenzene-containing nucleotide, melts higher than the duplex containing a difluorotoluene moiety. © 2002 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Nucleotide analogs with apolar aromatic rings as
replacements for natural nucleobases have been shown
to have interesting properties, both in terms of Watson–
Crick duplexes containing these analogs and in terms of
polymerase-catalyzed reactions.1 One analog of
thymidine in particular has attracted attention: the
C-nucleoside containing a difluorotoluene moiety as
nucleobase surrogate (‘F’, Fig. 1).2 This analog is incor-
porated opposite to deoxyadenosine residues in poly-
merase-catalyzed primer extension reactions and forms
base pairs that are isosteric to thymine:adenine base
pairs. Therefore, this C-nucleotide may be used as a lead
structure for developing new nucleotide analogs that
can engage in base pairing to deoxyadenosine residues.

We have become interested in interactions between
modified nucleobases and natural nucleobases that go
beyond the hydrogen bonding and stacking interactions

found in natural A:T and G:C base pairs. Modified
nucleobases may engage in duplex stabilizing interac-
tions by forming additional hydrogen bonds, by binding
via the major or the minor groove, or by offering
additional surface sites for stacking.3,4 For example,
clamp-like binding in the major groove has been
reported to stabilize C:G base pairs.5 Propinyl sub-
stituents at position 5 of pyrimidines have been shown
to increase duplex stability via stacking.6

We have an interest in tuning the stability of T:A base
pairs containing unmodified deoxyadenosine residues by
modifying thymidine residues. In this case, the lack of a
hydrogen bonding site at the 2-position of the adenine
ring makes the formation of a third hydrogen bond
difficult. Therefore, surrogates of thymine carrying sub-
stituents capable of engaging in additional van der
Waals or stacking interactions, such as a fluorobenzene
ring with a 2-ethynyl group (Fc, Fig. 1), were of
interest.

Figure 1.
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2. Results and discussion

Synthesis of phosphoramidite 1 (Scheme 1) started
from commercially available 2,7 which in the present
case was synthesized from less expensive 2-bromo-5-
fluoroaniline in 84% yield in analogy to a protocol of
Heaney and Miller for a similar substrate.8 Sonogashira
coupling9,10 of 2 with 1.2 equivalents of trimethylsilyl-
acetylene furnished 3 in 95% yield after distillation.11

Bromide 3 was converted to its Grignard derivative
under continuous ‘starting’ of the reaction with 1,2-
dibromoethane, transmetallated with CdCl2,12 and
reacted with chloroglycosyl donor 413 to yield 53% of a
mixture of epimers 5a and 5b.14 The 1H NMR spectrum
suggested that the undesired �-anomer 5a predomi-
nated in this mixture by a factor of 8–10. The epimers
proved difficult to separate, but desilylation to 6a/b in
71% yield allowed chromatographic separation, fol-
lowed by epimerization of 6a to a mixture of 6a and
6b.15 The combined yield of isolated nucleosides after
epimerization in toluene was 69%. Other solvents and a
one pot deprotection/epimerization with BF3·OEt2 gave
lower yields. Desired �-epimer 6b16 was deprotected to
7 in 99% yield, 5�-protected with a dimethoxytrityl
group in 79% yield, and phosphitylated under DIPAT
activation17 to obtain 1 in 76% after chromatography.

With phosphoramidite 1 in hand, DNA syntheses pro-
ceeded via a standard protocol.18 Two modified
oligonucleotides, 5�-CTTTTCFcTTCTT-3� (8), where
Fc denotes the nucleotide with the fluoroethynyl ring
as nucleobase surrogate (Scheme 1), and 5�-
TTTTAAFcAAT-3� (9), were prepared19 together with
unmodified control and target strands. Duplexes of 9
with its complementary strand melted too low to allow
determination of an accurate UV-melting point (Tm).

But 8 and 5�-AAGAAAGAAAAG-3� gave a duplex
stable enough to obtain a full sigmoidal UV melting
curve. Compared to unmodified duplex
CTTTTCTTTCTT: AAGAAAGAAAAG, the melting
point of 8: AAGAAAGAAAAG is significantly
depressed (Table 1). When compared to the duplex
CTTTTCFTTCTT: AAGAAAGAAAAG, however,
where a difluorotoluene moiety replaces the thymine,
the duplex of 8 shows a higher melting point,20 suggest-
ing that the ethynyl group does provide a stabilizing
effect compared to a fluoro substituent.

Given that the methyl group of difluorotoluene is
absent in our base analog, the stabilizing effect of the
ethynyl group may be stronger than the melting point
increase suggests, since the stacking interactions pro-

Table 1. UV-melting points of duplexes at 1.6 �M strand
concentration, 10 mM PIPES buffer, pH 7.0, 10 mM
MgCl2, and 100 mM NaCl, determined at 260 nm

�Tm (°C)cDuplexa Tm (°C)b

–42.2�0.5CTTTTCTTTCTT:
AAGAAAGAAAAG

29.5�0.7 −12.7CTTTTCFcTTCTT:
AAGAAAGAAAAG

–CTTTTCTTTCTT: 39.4d

AAGAAAGAAAAG
−18.021.4dCTTTTCFTTCTT:

AAGAAAGAAAAG

a Sequences are given 5�- to 3�-terminus. The residue letter at the site
of modification is in boldface.

b UV melting point. For the first two entries, this is the mean of
melting points from four curves ± one standard deviation.

c Melting point difference to unmodified control duplex.
d From Ref. 1b, see also Ref. 20.

Scheme 1.
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vided by this methyl group are missing. Therefore it is
promising to pursue ethynyl substituents at position 2
of pyrimidine nucleobase analogs further. They may
also be useful for probing substrate–polymerase
complexes.21
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